TS 18
For those still interested:
Interflux® TS 18 is a no-clean flux, developed to give minimal residue formation after soldering. TS18 is used for applications where TS 15 does not provide enough activation.
Warning: TS 18 is being faded out and will eventually go out-of-production because IF 2005M provide superior results for the same applications. If you're planning to switch from lead to lead-free alloys, then IF 2005K would be an even better fit.
Zusammenfassung
TS 18 wird immer seltener verwendet und irgendwann aus dem Programm genommen, da IF 2005M für dieselben Anwendungen bessere Ergebnisse liefert.
Geeignet für
-
Wellenlöten ist ein Massenlötverfahren, das in der Elektronikfertigung verwendet wird, um elektronische Bauteilen mit einer Leiterplatte zu verbinden. Das Verfahren wird in der Regel für Bauteilen mit Durchkontaktierungen verwendet, kann aber auch zum Löten einiger SMD-Bauteile (Suface Mount Device) eingesetzt werden, die mit einem SMT-Kleber (Surface Mount Technology) auf die Unterseite der Leiterplatte geklebt werden, bevor sie den Wellenlötprozess durchlaufen. Der Wellenlötprozess umfasst drei Hauptschritte: Fluxen, Vorheizen und Löten. Ein Förderband transportiert die Leiterplatten durch die Maschine. Die Leiterplatten können in einem Rahmen befestigt werden, damit die Breite des Förderbandes nicht für jede einzelne Leiterplatte angepasst werden muss. Das Fluxen erfolgt in der Regel mit einem Sprühfluxer, aber auch Schaumfluxen und Jet-Fluxen sind möglich. Das flüssige Flussmittel wird von der Unterseite der Leiterplatte auf die Oberfläche und in die Durchkontaktierungen aufgetragen. Der Zweck des Flussmittels ist es, die lötbaren Oberflächen der Leiterplatte und der Bauteilen zu desoxydieren und der flüssigen Lotlegierung zu ermöglichen, eine intermetallische Verbindung mit diesen Oberflächen einzugehen, wodurch eine Lötstelle entsteht. Das Vorheizen hat drei Hauptfunktionen. Das Lösungsmittel des Flussmittels muss verdampft werden, da es nach dem Auftragen seine Funktion verliert und zu Lötfehlern wie Lötspritzer und Lötperlen führen kann, wenn es im flüssigen Zustand mit der Lötwelle in Berührung kommt. Flussmittel auf Wasserbasis benötigen im Allgemeinen mehr Vorheizung zum Verdampfen als Flussmittel auf Alkoholbasis. Die zweite Funktion des Vorheizens besteht darin, den Wärmeschock zu begrenzen, wenn die Leiterplatte mit dem flüssigen Lot der Lötwelle in Berührung kommt. Dies kann für einige SMD-Bauteile und Leiterplattenmaterialien wichtig sein. Die dritte Funktion des Vorheizens besteht darin, den Durchstieg des Lots in den Durchkontaktierungen zu fördern. Aufgrund des Temperaturunterschieds zwischen der Leiterplatte und dem flüssigen Lot wird das flüssige Lot abgekühlt, wenn es in die Durchkontaktierung eindringt. Thermisch schwere Leiterplatten und Bauteilen können dem flüssigen Lot so viel Wärme entziehen, dass es bis zum Erstarrungspunkt abgekühlt wird, wo es erstarrt, bevor es nach oben gelangt. Dies ist ein typisches Problem bei der Verwendung von Sn(Ag)Cu-Legierungen. Eine gute Vorheizung begrenzt den Temperaturunterschied zwischen der Leiterplatte und dem flüssigen Lot und verringert somit die Abkühlung des flüssigen Lots beim Aufstieg in die Durchkontaktierung. Dadurch ist die Chance größer, dass das flüssige Lot die Oberseite der Durchkontaktierung erreicht. In einem dritten Schritt wird die Leiterplatte über eine Lötwelle geführt. Ein Bad, das mit einer Lotlegierung gefüllt ist, wird auf Löttemperatur erw¨rmt. Diese Löttemperatur hängt von der verwendeten Lotlegierung ab. Die flüssige Legierung wird durch Kanäle in einen Wellenformer gepumpt. Es gibt verschiedene Arten von Wellenformern. Ein traditioneller Aufbau ist eine Chip-Welle in Kombination mit einer laminaren Hauptwelle. Die Chip-Welle pumpt das Lot in Richtung der Leiterplattenbewegung und ermöglicht das Löten der Rückseite von SMD-Bauteilen, die durch den Körper des Bauteils selbst vom Wellenkontakt in der laminaren Welle abgeschirmt sind (Schatteneffekt). Die laminare Hauptwelle fließt nach vorne, aber die verstellbare Rückplatte ist so positioniert, dass die Leiterplatte die Welle in einen Rückfluss drückt. Dadurch wird vermieden, dass die Leiterplatte durch die Reaktionsprodukte des Lötens gezogen wird. Ein Wellenformer, der immer beliebter wird, ist die Wörthmann-Welle, die die Funktion der Chip-Welle und der Hauptwelle in einer Welle vereint. Diese Welle ist empfindlicher für die richtige Einstellung und Brückenbildung. Da bleifreie Lotlegierungen hohe Arbeitstemperaturen benötigen und zur starken Oxidation neigen, werden viele Wellenlötprozesse unter Stickstoffatmosphäre durchgeführt. Eine neue Markttendenz, die von einigen als die Zukunft des Lötens angesehen wird, ist die Verwendung einer Legierung mit niedrigem Schmelzpunkt wie z.B. LMPA-Q. LMPA-Q benötigt weniger Temperatur und reduziert die Oxidation. Sie hat auch einige kostenbezogene Vorteile, wie z.B. einen geringeren Stromverbrauch, geringeren Verschleiß der Lötrahmen und keinen Bedarf an Stickstoff. Außerdem wird die thermische Belastung der elektronischen Bauteilen und der Leiterplattenmaterialien geringer.
Die wichtigsten Vorteile
-
Lötflussmittel auf Alkoholbasis sind flüssige Flussmittel, die Alkohol(e) als Hauptlösungsmittel enthalten. Die Mehrheit der in der Elektronikfertigung verwendeten flüssigen Flussmittel ist nach wie vor auf Alkoholbasis. Die Hauptgründe dafür sind ihre historische Verwendung (und damit ihr Marktanteil) sowie ihr im Allgemeinen größeres Prozessfenster im Vergleich zu Flussmitteln auf Wasserbasis. Flussmittel auf Wasserbasis haben zahlreiche Vorteile gegenüber Flussmitteln auf Alkoholbasis, wie z.B. geringerer Verbrauch, keine VOC-Emissionen (flüchtige organische Verbindungen), keine Brandgefahr, keine Notwendigkeit für speziellen Transport und Lagerung, geringere Geruchsbelästigung im Produktionsbereich,... Viele Elektronikhersteller scheinen jedoch das größere Prozessfenster von Flussmitteln auf Alkoholbasis den Vorteilen von Flussmitteln auf Wasserbasis vorzuziehen. Flussmittel auf Alkoholbasis sind im Allgemeinen weniger empfindlich gegenüber den richtigen Einstellungen des Sprühfluxers, um einen guten Flussmittelauftrag auf der Oberfläche und in den Durchkontaktierungen zu erzielen. Außerdem lassen sie sich beim Vorheizen leichter verdampfen und bergen ein geringeres Risiko, dass verbleibende Lösungsmitteltropfen Lötperlen, Lötzinnspritzer oder Brückenbildung beim Wellenkontakt verursachen. Ein weiterer Parameter, der die Einführung von Flussmitteln auf Wasserbasis erschwert, ist die Tatsache, dass der Wechsel eines Flussmittels in einigen Fällen ein zeitaufwändiger und kostspieliger Prozess sein kann. In der Regel sind dafür Zulassungstests und die Genehmigung der Endkunden erforderlich. Speziell für EMS (Electronic Manufacturing Services = Lohnlöter) kann dies eine Herausforderung sein. Einige Länder haben bereits Gesetze erlassen, die den VOC-Ausstoß von Fabrikschornsteinen begrenzen oder Steuern auf VOC-Emissionen erheben. Dies scheint ein zusätzlicher Anreiz zu sein, auf wasserbasierte Flussmittel umzusteigen. Eine aktuelle Entwicklung zwingt viele Hersteller dazu, sich mit wasserbasierten Flussmitteln zu beschäftigen. Die COVID-Pandemie Anfang 2020 hat die Nachfrage nach Desinfektionsmitteln auf Alkoholbasis plötzlich so stark erhöht, dass zu einem bestimmten Zeitpunkt so gut wie keine Alkohole mehr auf dem Markt verfügbar waren. Glücklicherweise war die Industrie, die Alkohole herstellt, in der Lage, ihre Mengen gerade noch rechtzeitig hochzufahren, um zu verhindern, dass Elektronikhersteller ohne Flussmittel auskommen mussten, um ihre Lötmaschinen zu betreiben.
-
Kolophonium, auch 'Rosin' genannt, ist eine aus Bäumen gewonnene Substanz, die üblicherweise in Lötflussmitteln verwendet wird. Es kann sowohl in flüssigen Flussmitteln als auch in Gel-Flussmitteln verwendet werden. Kolophoniumhaltige Flussmittel sind in der IPC-Klassifizierung an der Bezeichnung 'RO' zu erkennen. Kolophonium bietet im Allgemeinen ein gutes Prozessfenster in Bezug auf Zeit und Temperatur, hat jedoch eine Reihe von Nachteilen, die von der Anwendung abhängen, für die das kolophoniumhaltige Flussmittel verwendet wird. Bei flüssigen Flussmitteln für das Wellen- und Selektivlöten besteht durch das Kolophonium ein erhöhtes Risiko, dass die Düse von Sprüh- und Jet-Fluxsystemen verstopft, was zu einem höheren Wartungsaufwand und einem höheren Risiko schlechter Lötergebnisse führt. Die Rückstände eines kolophoniumhaltigen Flussmittels in der Lötmaschine und auf den Werkzeugen und Trägern lassen sich nur schwer entfernen, so dass in der Regel ein lösungsmittelhaltiger Reiniger erforderlich ist. Wenn das kolophoniumhaltige Flussmittel versehentlich auf die Kontakte eines Steckverbinders oder auf Kontaktkammstrukturen wie bei einer Fernbedienung oder in elektromechanischen Kontaktoren/Relais/Schaltern gelangt, führt dies bekanntermaßen zu Kontaktproblemen und Fehlfunktionen der elektronischen Baugruppe im Feld. Darüber hinaus können die Rückstände des Flussmittels, die auf der Platine verbleiben, zu Kontaktproblemen bei elektrischen Tests ( ICT= In Circuit Testing) führen, was zu Verzögerungen in der Produktion aufgrund von falschen Messfehlern führen kann. Dies erfordert in der Regel eine Reinigung der Leiterplatte und/oder der Teststifte. Diese teuren Teststifte sind fragil und empfindlich und können durch die Reinigung beschädigt werden. Außerdem ist bekannt, dass die Rückstände eines Kolophonium-Flussmittels auf Dauer nicht mit Schutzlacken kompatibel sind. Die Kolophoniumrückstände bilden eine Trennschicht zwischen der Leiterplatte und dem Schutzlack, die mit der Zeit zu einer Ablösung des Schutzlackes und auch zu Rissen führen kann, insbesondere wenn die Elektronische Baugruppe vielen Temperaturzyklen (Aufwärmen und Abkühlen) ausgesetzt ist. Aus diesen Gründen werden für das Wellen- und Selektivlöten in der Regel Flussmittel ohne Kolophonium und mehr spezifisch Flussmittel der 'OR'-Klasse verwendet. Kolophonium kann auch in Lötdrähten verwendet werden. Obwohl das Kolophonium ein gutes Prozessfenster in Bezug auf Zeit und Temperatur bietet, ist es sehr empfindlich gegenüber Verfärbungen, wenn es erhitzt wird. Die Verfärbung hängt von der Art des Kolophoniums und der Temperatur ab, die es gesehen hat. Da die Lötspitzentemperaturen in der Regel recht hoch sind, führt das Kolophonium im Lötdraht zu einer ziemlich starken visuellen Rückstandsbildung um die Lötstellen. Dadurch unterscheiden sie sich von den anderen Lötstellen, vom Reflow-, Wellen- und Selektivlöten. Wenn dies nicht erwünscht ist, muss ein Reinigungsvorgang durchgeführt werden. Außerdem gelten die Dämpfe eines kolophoniumhaltigen Lötdrahtes als gefährlich. Eine Rauchgasabsaugung ist obligatorisch, aber sowieso immer ratsam für jeden Handlötvorgang. Kolophoniumhaltige Drähte werden immer noch häufig verwendet, aber kolophoniumfreie Lötdrähte und insbesondere Lötdrähte der 'RE'-Klassifizierung gewinnen zunehmend an Bedeutung. Kolophonium wird auch in Lotpasten verwendet. Es bietet nicht nur ein gutes Prozessfenster in Bezug auf Zeit und Temperatur, sondern sorgt auch für eine gute Stabilität der Lotpaste auf der Schablone. Dies ermöglicht einen stabilen Druckprozess und damit stabile Lötergebnisse und Fehlerquoten. Die Verfärbung des Kolophoniums beim Reflowlöten ist nicht so ausgeprägt wie bei einem Lötdraht, da die Temperaturen beim Reflowlöten niedriger sind als beim Handlöten. Dennoch haben die Kolophoniumrückstände schlechte Kompatibilität mit Schutzlack und können mit der Zeit nach thermischen Zyklen Risse oder Ablösungen des Schutzlackes zeigen. Obwohl die meisten Hersteller den Schutzlack über den Lotpastenrückständen auftragen, ist es für optimale Ergebnisse ratsam, die Lotpastenrückstände zu entfernen. Angesichts der oben beschriebenen Vorteile von Kolophonium enthalten die meisten Lotpasten Kolophonium.
-
Absolut halogenfreie Lötchemie enthält weder absichtlich hinzugefügte Halogene noch Halogenide. Die IPC-Klassifizierung erlaubt bis zu 500 ppm Halogene für die niedrigste 'L0'-Klassifizierung. Flussmittel, Lotpasten und Lötdrähte aus dieser Klasse werden oft als 'halogenfrei' bezeichnet. Absolut halogenfreie Lötchemie geht noch einen Schritt weiter und enthält diese 'erlaubte' Menge an Halogenen nicht. Insbesondere in Kombination mit bleifreien Lotlegierungen und bei empfindlichen elektronischen Anwendungen gibt es Berichte dass diese geringen Mengen an Halogenen zu Zuverlässigkeitsproblemen wie z.B. zu hohen Leckströmen geführt haben. Halogene sind Elemente aus dem Periodensystem wie Cl, Br, F und I. Sie haben die physikalische Eigenschaft, dass sie gerne reagieren. Das ist aus Sicht der Lötchemie sehr interessant, denn sie soll Oxide von den zu lötenden Oberflächen entfernen. Und in der Tat erfüllen Halogene diese Aufgabe sehr gut. Selbst schwer zu reinigende Oberflächen wie Messing, Zn, Ni,... oder stark oxidierte Oberflächen oder degradiertes I-Sn und OSP (Organische Schutzschicht) können mit Hilfe von halogenhaltigen Flussmitteln gelötet werden. Halogene bieten ein großes Prozessfenster für die Lötbarkeit. Das Problem ist jedoch, dass die Rückstände und Reaktionsprodukte von halogenhaltigen Flussmitteln für elektronische Schaltungen problematisch sein können. Sie haben in der Regel eine hohe Hygroskopizität und eine hohe Wasserlöslichkeit und bergen ein erhöhtes Risiko für Elektromigration und hohe Leckströme. Dies bedeutet ein hohes Risiko für Fehlfunktionen der elektronischen Schaltungen. Speziell bei bleifreien Lötlegierungen häufen sich die Berichte, dass selbst kleinste Mengen an Halogenen für empfindliche elektronische Anwendungen problematisch sein können. Bei empfindlichen elektronischen Anwendungen handelt es sich in der Regel um hochohmige Schaltungen, Messschaltungen, Hochfrequenzschaltungen, Sensoren,... Deshalb geht die Tendenz dahin, in der Elektronikfertigung von Halogenen in der Lötchemie wegzukommen. Wenn die Lötbarkeit der zu lötenden Oberflächen von Bauteilen und Leiterplatte normal ist, besteht im Allgemeinen keine Notwendigkeit für diese Halogene. Intelligent konzipierte, absolut halogenfreie Lötprodukte bieten ein ausreichend großes Prozessfenster, um die Oberflächen zu reinigen und ein gutes Lötergebnis zu erzielen, und dies in Kombination mit hoch zuverlässigen Rückständen.
-
RoHS steht für Restriction of Hazard Substances (Beschränkung gefährlicher Stoffe). Es handelt sich um eine europäische Richtlinie: Richtlinie 2002/95/EG. Sie schränkt die Verwendung einiger Stoffe, die als besonders besorgniserregende Stoffe (SHVC = Substances of Very High Concern) gelten, in elektrischen und Elektronikgeräten für das Gebiet der Europäischen Union ein. Eine Liste dieser Stoffe finden Sie unten: Bitte beachten Sie, dass sich diese Informationen jederzeit ändern können. Informieren Sie sich immer auf der Website der Europäischen Union über die neuesten Informationen: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmium und Cadmiumverbindungen 2. Blei und Bleiverbindungen 3. Quecksilber und Quecksilberverbindungen (Hg) 4. Sechswertige Chromverbindungen (Cr) 5. Polychlorierte Biphenyle (PCB) 6. Polychlorierte Naphthaline (PCN) 7. Chlorierte Paraffine (CP) 8. Andere chlorierte organische Verbindungen 9. Polybromierte Biphenyle (PBB) 10. Polybromierte Diphenylether (PBDE) 11. Andere bromierte organische Verbindungen 12. Organische Zinnverbindungen (Tributylzinnverbindungen, Triphenylzinnverbindungen) 13. Asbest 14. Azo-Verbindungen 15. Formaldehyd 16. Polyvinylchlorid (PVC) und PVC-Mischungen 17. Dekabromierte Diphenylester (ab 1/7/08) 18. PFOS : EU-Richtlinie 76/769/EWG (nicht zulässig in einer Konzentration von 0,0005 Massenprozent oder mehr) 19. Bis(2-ethylhexyl)phthalat (DEHP) 20. Butylbenzylphthalat (BBP) 21. Dibutylphthalat (DBP) 22. Diisobutylphthalat 23. Deca bromierter Diphenylester (in elektrischen und elektronischen Geräten) Andere Länder außerhalb der Europäischen Union haben ihre eigene RoHS-Gesetzgebung eingeführt, die der europäischen RoHS größtenteils sehr ähnlich ist.
-
Rückstände nach dem Löten sind dem Lötprozess inhärent. Einige Lötprodukte hinterlassen mehr Rückstände als andere. Im Allgemeinen werden rückstandsarme Lötprodukte bevorzugt. Rückstände sind in der Regel aus mehreren möglichen Gründen unerwünscht. Einer davon ist aus ästhetischer Grund. Wenn der Endkunde seine Platinen erhält, möchte er natürlich, dass sie so sauber wie möglich sind. Weiterhin können Rückstände bei elektrischen Pin-Tests wie ICT (In Circuit Testing) oder Flying Probe stören. Sie können Kontaktprobleme und falsche Messwerte verursachen, die den Produktionsfluss behindern können. Rückstände können sich auch auf den Teststiften ablagern und müssen dort entfernt werden. Diese Teststifte sind sehr empfindlich und das Risiko, sie bei der Reinigung zu beschädigen, ist groß. Rückstände aus dem Lötprozess können auch die Hochfrequenzsignale empfindlicher elektronischer Anwendungen stören. Rückstände, die durch Kolophonium und Harz entstehen, sind in der Regel schlecht mit Schutzlacken kompatibel. Außerdem sind sie dafür bekannt, dass sie Kontaktprobleme verursachen, wenn sie auf Steckerkontakten, (Kohlenstoff-)Kontakten von Fernbedienungen, Kontaktflächen von Schaltern, Relais, Kontaktoren,... landen und Feldausfälle verursachen. Wenn ein Lötmittel als 'No-clean' eingestuft wird, ist das ein Hinweis darauf, dass die Rückstände dieses Lötmittels auf dem elektronischen Gerät verbleiben können. Dies basiert auf dem Bestehen von Zuverlässigkeitstests wie Oberflächenisolationswiderstandstests (SIR) und Elektro(chemische)migrationstests. Es gibt weltweit viele Normen, die solche Tests vorschreiben. Der am meisten akzeptierte Standard ist der IPC-Standard. Bei diesen Zuverlässigkeitstests wird eine Testplatine mit einer Kammstruktur unter Einhaltung bestimmter Parameter mit dem Lötprodukt verlötet. Die Testplatine wird über einen bestimmten Zeitraum hoher Luftfeuchtigkeit und erhöhten Temperaturen ausgesetzt, wobei der Oberflächenisolationswiderstand überwacht wird. Dieser Oberflächenisolationswiderstand darf nicht unter einen bestimmten Wert fallen. Die Leiterplatten werden außerdem mit einem Mikroskop visuell auf Anomalien wie z.B. Elektro(chemische)migration untersucht.
Dokumente
-
Verfügbar in 1 Sprache(n):