RA 25050

Aktiviertes Flussmittel

outdated

Interflux® RA25050 ist ein aktiviertes, kolophoniumbasiertes No-clean Lötflussmittel. RA25050 kann für Oberflächen mit schlechter Lötbarkeit verwendet werden. RA25010 und RA25015 sind weniger aktiviert als RA25050.

RA 25050 bottles

Geeignet für

  • Handlöten ist eine Technologie in der Elektronikfertigung, bei der ein Handlötkolben verwendet wird, um eine Lötstelle zu bilden oder ein Bauteil von einer Leiterplatte zu entlöten. Das Verfahren wird vor allem bei Nacharbeit und Reparatur eingesetzt, aber auch zum Löten einzelner Bauteilen, die beim Massenlötverfahren (Reflow- oder Wellenlöten) ausgelassen wurden. Dies kann an der Verfügbarkeit oder der Temperaturempfindlichkeit dieser Bauteile liegen. Der Lötkolben ist normalerweise Teil einer Lötstation, die über eine Stromversorgung verfügt, die die Temperatur des Lötkolbens steuert. Diese Temperatur kann je nach verwendeter Lotlegierung eingestellt werden und liegt normalerweise zwischen 320°C und 390°C. Der Lötkolben hat eine austauschbare Lötspitze, die je nach dem zu lötenden Bauteil ausgewählt werden kann. Für eine optimale Wärmeübertragung ist eine möglichst große Lötspitze empfehlenswert, vor allem beim Löten von (thermisch schweren) Durchkontaktierten Bauteilen. Beim Löten von thermisch schweren Bauteilen und Platinen ist auch die Leistung der Lötstation wichtig, um die eingestellte Temperatur der Lötspitze zu halten. Bei Nacharbeit und Reparatur ist es unrealistisch, die optimale Lötspitze für jedes einzelne Bauteil zu wechseln, und es werden nur einige Lötspitzen verwendet. Es gibt Lötspitzen zum Löten von mehreren Lötstellen hintereinander von SMD-Bauteilen, wie z.B. für SOICs (Small Outline Integrated Circuit) und QFPs (Quad Flat Package). Um die Wärmeübertragung und das Fließen des Lots zu unterstützen, sind die Lötspitzen benetzbar, das heißt, sie gehen eine Wechselwirkung mit der Lotlegierung ein. Während des Lötens oxidieren diese Spitzen und können ihre Benetzbarkeit verlieren, wodurch die Wärmeübertragung behindert wird. Dies kann vermieden werden, indem Sie die Lötspitze z.B. mit einem Spitzenverzinner reinigen. Nach einiger Zeit nutzen sich die Lötspitzen trotzdem ab und müssen ersetzt werden. Die Lebensdauer der Lötspitze kann optimiert werden, indem Sie die Verwendung von abrasiven oder aggressiven Lötspitzenreinigern vermeiden oder die Lötspitze nicht mechanisch reinigen, z.B. mit Stahlwolle oder Schleifpapier. Die Verwendung eines absolut halogenfreien Lötspitzenverdünners ist ratsam. Beim Handlöten wird das Lot für die Lötstelle in der Regel durch einen Lötdraht bereitgestellt. Ein Lötdraht ist in verschiedenen Durchmessern und verschiedenen Legierungen erhältlich und enthält eine bestimmte Menge eines bestimmten Flussmittels. Die Legierung ist in der Regel die gleiche oder eine ähnliche Legierung wie für das Massenlötverfahren (Reflow-, Wellen- oder Selektivlöten). Der Durchmesser wird entsprechend der Größe der Lötstelle gewählt. Der Flussmittelgehalt im Lötdraht richtet sich in der Regel nach der thermischen Masse des zu lötenden Bauteils und der Platine. (Thermisch schwere) durchkontakierte Lötstellen benötigen mehr Flussmittel. Ein höherer Flussmittelgehalt führt auch zu mehr sichtbaren Flussmittelrückständen nach dem Löten. Manchmal wird ein zusätzliches Flussmittel benötigt, das in den meisten Fällen ein flüssiges Rework- und Reparaturflussmittel ist, aber auch ein Gel-Flussmittel sein kann. Die Art des Flussmittels/Lötdrahtes wird durch die Lötbarkeit der zu lötenden Oberflächen bestimmt. Bei normaler Lötbarkeit von elektronischen Bauteilen und Leiterplatten ist ein absolut halogenfreies 'L0'-Flussmittel/Lötdraht empfehlenswert. Im Allgemeinen wird ein Handlötvorgang wie folgt durchgeführt: Stellen Sie die Temperatur der Lötspitze entsprechend der verwendeten Lotlegierung ein. Für bleifreie Legierungen liegt die empfohlene Arbeitstemperatur zwischen 320°C und 390°C. Bei dichteren Metallen wie Nickel kann die Temperatur bis auf 420°C erhöht werden. Die Verwendung einer guten Lötstation ist wichtig. Verwenden Sie eine Lötstation mit einer kurzen Reaktionszeit und mit ausreichender Leistung für Ihre Anwendung. Wählen Sie die richtige Lötspitze: Um den Wärmewiderstand zu verringern, ist es wichtig, eine möglichst große Kontaktfläche mit den zu lötenden Oberflächen zu schaffen. Erwärmen Sie beide Oberflächen gleichzeitig. Berühren Sie mit dem Lötdraht leicht die Stelle, an der sich die Lötspitze und die zu lötenden Flächen treffen (die geringe Menge an Lot sorgt für eine drastische Senkung des Wärmewiderstands). Führen Sie anschließend ohne Unterbrechung die richtige Menge Lötzinn zu in der Nähe der Lötspitze, ohne die Spitze zu berühren. Dies verringert das Risiko von Flussmittelspritzern und vorzeitigem Flussmittelverbrauch!

Die wichtigsten Vorteile

  • Rosin auch bekannt als Kolophonium, ist ein Naturprodukt, das von Bäumen stammt. Es gibt viele Arten von Kolophonium mit sehr unterschiedlichen Eigenschaften, aber einige allgemeine Eigenschaften gelten. Als Teil der Lötchemie, so wie Flussmittel, Lotpasten und Lötdrähte, bietet Kolophonium im Allgemeinen ein großes Prozessfenster im Lötprozess. Das bedeutet, dass es generell längere Zeiten und höhere Temperaturen aushalten kann als z.B. ein Kunstharz. Ein Vorteil des Kolophoniums in einem flüssigen Flussmittel ist, dass es im Allgemeinen dazu neigt, nach dem Wellen- oder Selektivlöten weniger Lötperlen auf der Lötstoppmaske zu hinterlassen. Außerdem bietet der Kolophoniumrückstand einen gewissen Schutz gegen atmosphärische Feuchtigkeit. Dies kann eine zusätzliche Chance bieten, klimatische Zuverlässigkeitstests zu bestehen. Diese Schutzwirkung nimmt jedoch mit der Zeit ab. Andererseits kann Kolophonium in einem flüssigen Lötflussmittel auch einige Nachteile haben. Es erhöht das Risiko, dass die Sprüh- oder Jet-Düsen von Wellen- und Selektivlötmaschinen verstopfen. Die Rückstände, die in der Maschine und auf den Lötrahmen zurückbleiben, sind recht schwer zu entfernen. Rückstände auf der Leiterplatte können den elektrischen Pintest (ICT, In Circuit Testing) beeinträchtigen und Kontaktprobleme verursachen, was zu einer falschen Messwert/falsche Fehlern führen kann. In einigen Fällen kann dies zu einer Behinderung des Produktionsflusses führen. Wenn ein Teil des Sprühnebels des kolophoniumhaltigen Flussmittels versehentlich auf die Kontakte eines Steckers, eines Schalters/Relais/Kontaktors mit teilweise offenem Gehäuse oder auf Kohlenstoffkontakte oder auf einem Kontaktpatron auf der Leiterplatte gelangt, kann dies ebenfalls zu Kontaktproblemen führen. Kolophoniumrückstände sind im Allgemeinen schlecht mit Schutzlacken kompatibel. Nach thermischen Zyklen kann der Schutzlack Risse aufweisen, in die atmosphärische Feuchtigkeit eindringen und kondensieren kann. In Anbetracht der obigen Ausführungen und unter Abwägung der Vorteile von Kolophonium in flüssigen Lötflussmitteln gegenüber den Nachteilen, gibt es eine anhaltende Tendenz, flüssige Flussmittel ohne Kolophonium zu verwenden. Die als 'OR' klassifizierten Flussmittel enthalten kein Kolophonium. Kolophonium wird sehr häufig in Lötdrähten verwendet, da es ein breites Prozessfenster in Bezug auf Zeit und Temperatur bietet. Der Nachteil ist, dass Kolophonium dazu neigt, sich mit der Temperatur zu verfärben und visuell starke Rückstände zu hinterlassen. Wenn der Lötdraht für die Nacharbeit von elektronischen Leiterplatten verwendet wird, sind diese Rückstände für einige Elektronikhersteller nicht erwünscht, da sie nicht möchten, dass ihre Kunden sehen, dass eine Leiterplatte nachbearbeitet wurde. Die Reinigung dieser Kolophoniumrückstände erfordert spezielle Reinigungsmittel und ist ein zeitaufwendiger Prozess. In diesem Fall können sich die Hersteller für einen RE-klassifizierten Lötdraht wie IF 14 entscheiden. Die Rückstände sind minimal und können mit einer trockenen Bürste weggebürstet werden. Kolophonium wird auch in Lötpasten verwendet. Es bietet nicht nur ein gutes Prozessfenster in Bezug auf Zeit und Temperatur, sondern sorgt auch für eine gute Stabilität der Lotpaste auf der Schablone. Dies ermöglicht einen stabilen Druckprozess und damit stabile Lötergebnisse und Fehlerquoten. Die Verfärbung des Kolophoniums beim Reflowlöten ist nicht so ausgeprägt wie bei einem Lötdraht, da die Temperaturen beim Reflowlöten niedriger sind als beim Handlöten. Dennoch sind die Kolophoniumrückstände schlecht mit dem Schutzlack kompatibel und können mit der Zeit nach thermischen Zyklen Risse oder Ablösungen des Schutzlackes zeigen. Obwohl die meisten Hersteller den Schutzlack über die Lotpastenreste auftragen, ist es für optimale Ergebnisse ratsam, die Lotpastenrückstände zu entfernen. Angesichts der oben beschriebenen Vorteile von Kolophonium enthalten die meisten Lotpasten Kolophonium.

  • Die Benetzungsfähigkeit eines Lötmittels bezieht sich darauf, wie gut die Aktivierung des Lötmittels in der Lage ist, Oxide von den zu lötenden Oberflächen zu entfernen. Diese Oxide müssen entfernt werden, damit die flüssige Lotlegierung in die zu lötenden Oberflächen eindringen kann. Wenn die Qualität der zu lötenden Oberflächen in der Elektronikfertigung normal ist, kann man ein Lötmittel der niedrigsten Aktivierungsklasse L0 verwenden. Im Allgemeinen wird nur dann ein Produkt mit höherer Aktivität oder erhöhter Benetzungsfähigkeit verwendet, wenn die Oberflächen degradiert sind oder wenn das Basismetall schwer zu löten ist. Solche Oberflächen können z.B. chemisches Sn sein, das zu dünn aufgetragen oder zu lange vor dem Löten gelagert wurde, Bauteile oder Leiterplatten, die zu lange in heißer und feuchter Umgebung gelagert wurden und stark oxidiert sind, ungeschütztes Ni, Messing,... Ein weiterer möglicher Grund für die Verwendung eines Produkts mit erhöhter Benetzungsfähigkeit ist die einfachere Handhabung. Ein Lötdraht mit erhöhter Benetzungsfähigkeit ermöglicht zum Beispiel ein schnelleres Löten und ist nicht so empfindlich gegenüber der korrekten Handhabung, die für eine gute Handlötstelle erforderlich ist. Beim Handlöten in großen Volumen von elektronischen Geräten die nicht so hohe Anforderungen an die Rückstände nach dem Löten haben, werden oft Lötdrähte mit erhöhter Benetzungsfähigkeit verwendet. Auch beim Roboterlöten und Laserlöten werden häufig Lötdrähte mit erhöhter Benetzungsfähigkeit verwendet, da sie generell bessere Eigenschaften für diese Prozesse haben.

  • Eine erhöhte Aktivität eines Lötprodukts kann für Oberflächen mit schlechter Lötbarkeit erforderlich sein, wie z.B. Messing, ungeschütztes Ni, oxidiertes Ag, Cu, das nicht mikrogeätzt wurde,... oder Oberflächen mit reduzierter Lötbarkeit, wie z.B. I-Sn, das zu lange gelagert wurde oder zu viel Wärme ausgesetzt war, Cu-OSP, das vor zu langer Zeit ein bleifreies Reflowprofil durchlaufen hat,... Ein Hinweis auf die Aktivität eines Lötprodukts ist seine Klassifizierung. Die gängigste und meist akzeptierte Klassifizierung für Lötprodukte ist die IPC. L0 ist die niedrigste Aktivierungsklasse und der Standard, sie sollte für alle konventionellen Oberflächen normaler Qualität geeignet sein, die in der Elektronikfertigung verwendet werden. L1 ist die niedrigste Aktivierungsklasse, aber mit einem Halogengehalt von bis zu 0,5%. Diese Halogene führen in den meisten Fällen bereits zu einem besseren Ergebnis auf vielen der zuvor genannten Oberflächen mit schlechter oder verschlechterter Lötbarkeit. Die anderen Aktivierungsklassen sind M0 und M1 sowie H0 und H1. M steht für Mittel und H steht für Hoch. 0 steht für bis zu 500ppm Halogene sowohl für M0 als auch für H0. 1 steht für bis zu 2% Halogene für die Klasse M1 und für H1 sind mehr als 2% Halogene erlaubt. Lötprodukte der Klasse H sind mit Vorsicht zu behandeln, da sie korrosiv sein können und gereinigt werden müssen, vorzugsweise in einem automatisierten Reinigungsverfahren.

  • Lötflussmittel auf Alkoholbasis sind flüssige Flussmittel, die Alkohol(e) als Hauptlösungsmittel enthalten. Die Mehrheit der in der Elektronikfertigung verwendeten flüssigen Flussmittel ist nach wie vor auf Alkoholbasis. Die Hauptgründe dafür sind ihre historische Verwendung (und damit ihr Marktanteil) sowie ihr im Allgemeinen größeres Prozessfenster im Vergleich zu Flussmitteln auf Wasserbasis. Flussmittel auf Wasserbasis haben zahlreiche Vorteile gegenüber Flussmitteln auf Alkoholbasis, wie z.B. geringerer Verbrauch, keine VOC-Emissionen (flüchtige organische Verbindungen), keine Brandgefahr, keine Notwendigkeit für speziellen Transport und Lagerung, geringere Geruchsbelästigung im Produktionsbereich,... Viele Elektronikhersteller scheinen jedoch das größere Prozessfenster von Flussmitteln auf Alkoholbasis den Vorteilen von Flussmitteln auf Wasserbasis vorzuziehen. Flussmittel auf Alkoholbasis sind im Allgemeinen weniger empfindlich gegenüber den richtigen Einstellungen des Sprühfluxers, um einen guten Flussmittelauftrag auf der Oberfläche und in den Durchkontaktierungen zu erzielen. Außerdem lassen sie sich beim Vorheizen leichter verdampfen und bergen ein geringeres Risiko, dass verbleibende Lösungsmitteltropfen Lötperlen, Lötzinnspritzer oder Brückenbildung beim Wellenkontakt verursachen. Ein weiterer Parameter, der die Einführung von Flussmitteln auf Wasserbasis erschwert, ist die Tatsache, dass der Wechsel eines Flussmittels in einigen Fällen ein zeitaufwändiger und kostspieliger Prozess sein kann. In der Regel sind dafür Zulassungstests und die Genehmigung der Endkunden erforderlich. Speziell für EMS (Electronic Manufacturing Services = Lohnlöter) kann dies eine Herausforderung sein. Einige Länder haben bereits Gesetze erlassen, die den VOC-Ausstoß von Fabrikschornsteinen begrenzen oder Steuern auf VOC-Emissionen erheben. Dies scheint ein zusätzlicher Anreiz zu sein, auf wasserbasierte Flussmittel umzusteigen. Eine aktuelle Entwicklung zwingt viele Hersteller dazu, sich mit wasserbasierten Flussmitteln zu beschäftigen. Die COVID-Pandemie Anfang 2020 hat die Nachfrage nach Desinfektionsmitteln auf Alkoholbasis plötzlich so stark erhöht, dass zu einem bestimmten Zeitpunkt so gut wie keine Alkohole mehr auf dem Markt verfügbar waren. Glücklicherweise war die Industrie, die Alkohole herstellt, in der Lage, ihre Mengen gerade noch rechtzeitig hochzufahren, um zu verhindern, dass Elektronikhersteller ohne Flussmittel auskommen mussten, um ihre Lötmaschinen zu betreiben.

  • RoHS steht für Restriction of Hazard Substances (Beschränkung gefährlicher Stoffe). Es handelt sich um eine europäische Richtlinie: Richtlinie 2002/95/EG. Sie schränkt die Verwendung einiger Stoffe, die als besonders besorgniserregende Stoffe (SHVC = Substances of Very High Concern) gelten, in elektrischen und Elektronikgeräten für das Gebiet der Europäischen Union ein. Eine Liste dieser Stoffe finden Sie unten: Bitte beachten Sie, dass sich diese Informationen jederzeit ändern können. Informieren Sie sich immer auf der Website der Europäischen Union über die neuesten Informationen: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmium und Cadmiumverbindungen 2. Blei und Bleiverbindungen 3. Quecksilber und Quecksilberverbindungen (Hg) 4. Sechswertige Chromverbindungen (Cr) 5. Polychlorierte Biphenyle (PCB) 6. Polychlorierte Naphthaline (PCN) 7. Chlorierte Paraffine (CP) 8. Andere chlorierte organische Verbindungen 9. Polybromierte Biphenyle (PBB) 10. Polybromierte Diphenylether (PBDE) 11. Andere bromierte organische Verbindungen 12. Organische Zinnverbindungen (Tributylzinnverbindungen, Triphenylzinnverbindungen) 13. Asbest 14. Azo-Verbindungen 15. Formaldehyd 16. Polyvinylchlorid (PVC) und PVC-Mischungen 17. Dekabromierte Diphenylester (ab 1/7/08) 18. PFOS : EU-Richtlinie 76/769/EWG (nicht zulässig in einer Konzentration von 0,0005 Massenprozent oder mehr) 19. Bis(2-ethylhexyl)phthalat (DEHP) 20. Butylbenzylphthalat (BBP) 21. Dibutylphthalat (DBP) 22. Diisobutylphthalat 23. Deca bromierter Diphenylester (in elektrischen und elektronischen Geräten) Andere Länder außerhalb der Europäischen Union haben ihre eigene RoHS-Gesetzgebung eingeführt, die der europäischen RoHS größtenteils sehr ähnlich ist.