Anti-Oxidant Pellets

Desoxidationstabletten

Die Interflux® Anti-Oxidationstabletten minimieren die Bildung von Oxiden in bleifreien und SnPb(Ag)-Lötbädern. Wird als Zusatz im Lötbad verwendet.
Das Produkt wird nicht für die Verwendung in geschlossenen Stickstoffmaschinen oder in Kombination mit Ni-dotierten Lotlegierungen empfohlen.

Anti Oxidant Pellets SnPb & Sn100 250g jar 2

Geeignet für

  • Die Lötbadkonditionierung wird für Wellenlöt-Lötbäder oder Tauchlöt-/Vorverzinnungs-Lötbäder verwendet, die unter atmosphärischen Bedingungen arbeiten (keine geschlossenen Stickstoffsysteme). Bei der Lötbadkonditionierung werden Anti-Oxydant-Tabletten verwendet, um die Oxidation während des Betriebs des Lötbads zu verhindern, und ein Desoxidationsöl, um die Menge der entstandenen Krätze zu reduzieren. Dies führt zu einem saubereren Lötbad mit besserer Wärmeübertragung und somit zu einem schnelleren Löten. Die Konditionierung des Lötbads verringert auch das Risiko, dass Oxide auf die Leiterplatte gelangen, wo sie Probleme wie Mikrobrücken verursachen könnten. Außerdem wird der Lotverbrauch drastisch gesenkt. Für Lotbäder bis 300°C wird 1 Tablette pro kg Lot im Lotbad hinzugefügt. Wenn frisches Lot in das Bad gegeben wird, wird ebenfalls 1 Tablette pro kg zugegebenem Lot hinzugefügt. Für Lotbäder von 300°C-500°C beträgt die Dosierung 2 Pellets pro kg Lot im Lotbad/frisch zugegebenes Lot. Für das Desoxidationsöl werden folgende Schritte durchgeführt: Tragen Sie aus Sicherheitsgründen einen Mundschutz, Schutzhandschuhe und Schutzkleidung. Sammeln Sie die Krätze auf einer Seite der Maschine. Geben Sie einen Löffel IF910 auf die Krätze. Mischen Sie es mit zwei Edelstahlspachteln, bis sich ein schwarzes Pulver bildet. Entfernen Sie das schwarze Pulver. Wiederholen Sie den Vorgang, wenn nötig.

  • Wellenlöten ist ein Massenlötverfahren, das in der Elektronikfertigung verwendet wird, um elektronische Bauteilen mit einer Leiterplatte zu verbinden. Das Verfahren wird in der Regel für Bauteilen mit Durchkontaktierungen verwendet, kann aber auch zum Löten einiger SMD-Bauteile (Suface Mount Device) eingesetzt werden, die mit einem SMT-Kleber (Surface Mount Technology) auf die Unterseite der Leiterplatte geklebt werden, bevor sie den Wellenlötprozess durchlaufen. Der Wellenlötprozess umfasst drei Hauptschritte: Fluxen, Vorheizen und Löten. Ein Förderband transportiert die Leiterplatten durch die Maschine. Die Leiterplatten können in einem Rahmen befestigt werden, damit die Breite des Förderbandes nicht für jede einzelne Leiterplatte angepasst werden muss. Das Fluxen erfolgt in der Regel mit einem Sprühfluxer, aber auch Schaumfluxen und Jet-Fluxen sind möglich. Das flüssige Flussmittel wird von der Unterseite der Leiterplatte auf die Oberfläche und in die Durchkontaktierungen aufgetragen. Der Zweck des Flussmittels ist es, die lötbaren Oberflächen der Leiterplatte und der Bauteilen zu desoxydieren und der flüssigen Lotlegierung zu ermöglichen, eine intermetallische Verbindung mit diesen Oberflächen einzugehen, wodurch eine Lötstelle entsteht. Das Vorheizen hat drei Hauptfunktionen. Das Lösungsmittel des Flussmittels muss verdampft werden, da es nach dem Auftragen seine Funktion verliert und zu Lötfehlern wie Lötspritzer und Lötperlen führen kann, wenn es im flüssigen Zustand mit der Lötwelle in Berührung kommt. Flussmittel auf Wasserbasis benötigen im Allgemeinen mehr Vorheizung zum Verdampfen als Flussmittel auf Alkoholbasis. Die zweite Funktion des Vorheizens besteht darin, den Wärmeschock zu begrenzen, wenn die Leiterplatte mit dem flüssigen Lot der Lötwelle in Berührung kommt. Dies kann für einige SMD-Bauteile und Leiterplattenmaterialien wichtig sein. Die dritte Funktion des Vorheizens besteht darin, den Durchstieg des Lots in den Durchkontaktierungen zu fördern. Aufgrund des Temperaturunterschieds zwischen der Leiterplatte und dem flüssigen Lot wird das flüssige Lot abgekühlt, wenn es in die Durchkontaktierung eindringt. Thermisch schwere Leiterplatten und Bauteilen können dem flüssigen Lot so viel Wärme entziehen, dass es bis zum Erstarrungspunkt abgekühlt wird, wo es erstarrt, bevor es nach oben gelangt. Dies ist ein typisches Problem bei der Verwendung von Sn(Ag)Cu-Legierungen. Eine gute Vorheizung begrenzt den Temperaturunterschied zwischen der Leiterplatte und dem flüssigen Lot und verringert somit die Abkühlung des flüssigen Lots beim Aufstieg in die Durchkontaktierung. Dadurch ist die Chance größer, dass das flüssige Lot die Oberseite der Durchkontaktierung erreicht. In einem dritten Schritt wird die Leiterplatte über eine Lötwelle geführt. Ein Bad, das mit einer Lotlegierung gefüllt ist, wird auf Löttemperatur erw¨rmt. Diese Löttemperatur hängt von der verwendeten Lotlegierung ab. Die flüssige Legierung wird durch Kanäle in einen Wellenformer gepumpt. Es gibt verschiedene Arten von Wellenformern. Ein traditioneller Aufbau ist eine Chip-Welle in Kombination mit einer laminaren Hauptwelle. Die Chip-Welle pumpt das Lot in Richtung der Leiterplattenbewegung und ermöglicht das Löten der Rückseite von SMD-Bauteilen, die durch den Körper des Bauteils selbst vom Wellenkontakt in der laminaren Welle abgeschirmt sind (Schatteneffekt). Die laminare Hauptwelle fließt nach vorne, aber die verstellbare Rückplatte ist so positioniert, dass die Leiterplatte die Welle in einen Rückfluss drückt. Dadurch wird vermieden, dass die Leiterplatte durch die Reaktionsprodukte des Lötens gezogen wird. Ein Wellenformer, der immer beliebter wird, ist die Wörthmann-Welle, die die Funktion der Chip-Welle und der Hauptwelle in einer Welle vereint. Diese Welle ist empfindlicher für die richtige Einstellung und Brückenbildung. Da bleifreie Lotlegierungen hohe Arbeitstemperaturen benötigen und zur starken Oxidation neigen, werden viele Wellenlötprozesse unter Stickstoffatmosphäre durchgeführt. Eine neue Markttendenz, die von einigen als die Zukunft des Lötens angesehen wird, ist die Verwendung einer Legierung mit niedrigem Schmelzpunkt wie z.B. LMPA-Q. LMPA-Q benötigt weniger Temperatur und reduziert die Oxidation. Sie hat auch einige kostenbezogene Vorteile, wie z.B. einen geringeren Stromverbrauch, geringeren Verschleiß der Lötrahmen und keinen Bedarf an Stickstoff. Außerdem wird die thermische Belastung der elektronischen Bauteilen und der Leiterplattenmaterialien geringer.

  • Das Vorverzinnen ist eine Löttechnik, die für Drähte und Kabel und auch für die Anschlüsse einiger elektronischer und mechanischer Bauteilen verwendet wird. Beim Vorverzinnen wird eine Lotschicht auf die Oberfläche aufgetragen, die eine gute Lötbarkeit für die folgenden Lötprozesse gewährleistet. Die Lötbarkeit dieser Schicht bleibt auch während der Lagerung sehr gut erhalten. Die Vorverzinnung erfolgt in der Regel durch Eintauchen der zu lötenden Oberfläche in flüssiges Lot, bei dem es sich normalerweise um eine bleifreie Sn(Ag)Cu-Legierung handelt. Einige Systeme verwenden eine kleine Welle von flüssigem Lot oder eine Düse, die flüssiges Lot ausstößt, um die Vorverzinnung durchzuführen. Die Vorverzinnung kann manuell erfolgen, wird aber in den meisten Fällen in einem automatisierten Prozess durchgeführt. Vor dem Löten wird der Anschluss oder der Draht in ein Lötflussmittel getaucht. Um Flussmittelrückstände nach dem Löten zu vermeiden, ist die Eintauchtiefe in das Flussmittel normalerweise geringer oder genauso tief wie die Eintauchtiefe in das Lot. Je nach der Lötbarkeit der zu verzinnenen Oberflächen, können unterschiedliche Flussmittel verwendet werden. Für schwer zu lötende Oberflächen wie Ni, Zn, Messing, stark oxidiertes Cu,... werden normalerweise wasserlösliche Flussmittel verwendet. Sie bieten eine ausgezeichnete Lötbarkeit, können und müssen aber anschließend in einem wasserbasierten Waschverfahren gereinigt werden, da die Rückstände dieser Flussmittel Probleme verursachen können (wie z.B. Korrosion). Für Oberflächen mit normaler Lötbarkeit kann IF 2005C oder PacIFic 2009M verwendet werden. Die Temperatur der Lötlegierung ist in der Regel höher als beim Wellen- und Selektivlöten, da dies den Prozess beschleunigt und das Risiko einer Beschädigung der Komponenten sehr gering ist. Es ist auch möglich, dass der Tauchprozess die Beschichtung des zu verzinnenden Cu-Drahtes entfernen/abbrennen muss, was ebenfalls höhere Temperaturen erfordert. Generell liegen die Löttemperaturen zwischen 300-450°C. Bei diesen Temperaturen wird die Oberfläche des Lötbades ziemlich stark oxydiert. Die Verwendung von Anti-Oxydant-Tabletten kann diese Oxidation kompensieren. Einige Lötbäder entfernen die oberste Schicht des Lötbades mechanisch mit einem Rakel, bevor das Bauteil in das Lot getaucht wird. Die Eintauchzeiten hängen stark von der thermischen Masse des zu lötenden Bauteils ab und liegen in der Regel zwischen 0,5s und 3s.

  • Nacharbeit und Reparatur an einer elektronischen Baugruppe kann bei defekten Baugruppen durchgeführt werden, die aus dem Feld zurückkommen, kann aber auch in einer elektronischen Produktionsumgebung notwendig sein, um Fehler in der Bestückung und Lötprozessen zu korrigieren. Typische Nacharbeit- und Reparaturverfahren umfassen das Entfernen von Lötbrücken, das Hinzufügen von Lot an schlecht durchgelöteten Durchkontaktierungen oder anderen Lötstellen, das Ersetzen fehlerhaft bestückter Bauteile, das Ersetzen von Bauteilen die in der falschen Richtung bestückt sind, das Ersetzen von Bauteilen die Defekte aufweisen die mit den hohen Löttemperaturen in den Prozessen zusammenhängen, das Hinzufügen von Bauteilen, die z.B. aufgrund von Verfügbarkeit oder Temperaturempfindlichkeit nicht in den Prozess einbezogen wurden,... Die Identifizierung dieser Fehler kann durch visuelle Inspektion, durch AOI (automatisierte optische Inspektion), durch ICT (In Circuit Testing, elektrische Prüfung) oder durch CAT (Computer Aided Testing, Funktionsprüfung) erfolgen. Viele Reparaturarbeiten können mit einer Handlötstation durchgeführt werden, die über einen (Ent-)Lötkolben mit Temperatureinstellung verfügt. Das Lötzinn wird mit einem Lötdraht aufgetragen, den es in verschiedenen Legierungen und Durchmessern gibt und der ein Flussmittel enthält. In manchen Fällen wird ein flüssiges Reparaturflussmittel und/oder ein Gel-Flussmittel verwendet, um das Handlöten zu erleichtern. Für größere Bauteile, wie BGAs (Ball Grid Array), LGAs (Land Grid Array), QFNs (Quad Flat No Leads), QFPs (Quad Flat Package), PLCCs (Plastic Leaded Chip Carrier),... kann ein Reparaturgerät verwendet werden das ein Reflowprofil simuliert. Diese Reparaturgeräte gibt es in verschiedenen Größen und mit unterschiedlichen Optionen. In den meisten Fällen verfügen sie über eine Vorheizung von der Unterseite, die in der Regel IR (Infrarot) ist. Diese Vorheizung kann über ein Thermoelement gesteuert werden, das auf der Leiterplatte angebracht ist. Einige Geräte verfügen über eine Bestückungseinheit, die die korrekte Positionierung des Bauteils auf der Leiterplatte erleichtert. Bei der Heizeinheit handelt es sich in der Regel um Heißluft oder IR oder eine Kombination aus beidem. Mit Hilfe von Thermoelementen auf der Leiterplatte wird die Heizung so gesteuert, dass das gewünschte Lötprofil entsteht. In manchen Fällen besteht die Herausforderung darin, das Bauteil auf Löttemperaturen zu bringen, ohne benachbarte Bauteile auf Löttemperatur zu bringen. Das kann schwierig sein, wenn das zu reparierende Bauteil groß ist und kleine Bauteile in der Nähe hat. Für BGAs mit Kugeln aus einer Lotlegierung kann ein Gel-Flussmittel oder ein flüssiges Flussmittel mit höherem Feststoffanteil verwendet werden. In diesem Fall wird das Lot für die Lötstelle von den Kugeln geliefert. Aber auch die Verwendung einer Lötpaste ist möglich. Die Lötpaste kann auf die Anschlüsse des Bauteils oder auf die Leiterplatte gedruckt werden. Dies erfordert für jedes Bauteil eine andere Schablone. Das BGA kann auch in eine spezielle Tauchlotpaste getaucht werden, die zunächst mit einer Schablone mit einer großen Öffnung und einer bestimmten Dicke in eine Schicht gedruckt wird. Bei QFNs, LGAs QFNs, QFPs, PLCCs,...muss Lot hinzugefügt werden, um eine Lötstelle zu erzeugen. In einigen Fällen können QFPs von Hand gelötet werden, aber die Technik erfordert Erfahrung. Deswegen wird die Verwendung eines Reparaturgeräts oft bevorzugt. QFPs und PLCCs haben Anschlussbeinchen und können mit einer Tauchlotpaste verwendet werden. QFNs, LGAs und QFNs, die keine Anschlussbeinchen, sondern flache Kontakte haben, können nicht mit einer Tauchlotpaste verwendet werden, da ihre Körper die Lotpaste berühren würden. In diesem Fall muss die Lötpaste auf die Kontakte oder auf die Leiterplatte gedruckt werden. Im Allgemeinen ist es einfacher, die Lötpaste auf das Bauteil zu drucken als auf die Leiterplatte, insbesondere wenn eine so genannte 3D-Schablone verwendet wird, die eine Aussparung hat, in dem die Position des Bauteils fixiert ist. Das Auswechseln von durchkontaktierten Bauteilen kann mit einer Handlötstation erfolgen. Dazu wird in der Regel eine hohle Entlötspitze auf die Unterseite des Bauteilanschlusses aufgesetzt, die das Lot aus dem Loch absaugen kann. Die Entlötspitze muss das gesamte Lot in der Durchkontaktierung erhitzen, bis es vollständig flüssig ist. Bei thermisch schweren Platinen kann dies sehr schwierig sein. In diesem Fall kann auch die Oberseite der Lötstelle mit einem Lötkolben erhitzt werden. Alternativ kann die Platine vor dem Entlöten über eine Vorheizung vorgewärmt werden. Das Löten der Durchkontaktierte Bauteile erfolgt in der Regel mit einem Lötdraht, der mehr Flussmittel enthält. Alternativ kann auch zusätzliches Reparaturflussmittel in die Durchkontaktierung und/oder auf den Bauteilanschluss gegeben werden. Bei größeren Steckern kann ein Tauchlötbad verwendet werden, um den Stecker zu entfernen. Wenn die Zugänglichkeit auf der Leiterplatte eingeschränkt ist, kann eine Düse verwendet werden, deren Größe an den Steckverbinder angepasst ist. Die Verwendung von Flussmittel bei diesem Vorgang wird empfohlen.

Die wichtigsten Vorteile

  • Bleifreie Legierungen sind Lotlegierungen ohne Pb, die für die Verbindung von elektronischen Bauteilen mit Leiterplatten in der Elektronikfertigung verwendet werden. Im Jahr 2006 schränkte der Gesetzgeber die Verwendung von Blei (Pb) ein, da die Gefahr bestand, dass Altgeräte auf Deponien das Grundwasser verschmutzen und Pb in das Ökosystem gelangen würde. Wenn Pb vom menschlichen Körper aufgenommen wird, kann es nur sehr schwer entfernt werden, und es ist bekannt, dass es alle möglichen (langfristigen) Gesundheitsprobleme verursacht. Im Jahr 2006 wurde die Verwendung von Blei (Pb) per Gesetz eingeschränkt. Aus diesem Grund war die Industrie gezwungen, nach Alternativen ohne Pb zu suchen. Letztendlich hat sich die Industrie auf Lotlegierungen auf Sn(Ag)Cu-Basis festgelegt. Diese Legierungen boten eine akzeptable Verwendbarkeit in den bestehenden Lötprozessen in Kombination mit einer ausreichenden mechanischen Zuverlässigkeit der Lötstellen und guten thermischen und elektrischen Eigenschaften. Der Hauptnachteil der Sn(Ag)Cu-Legierungen ist ihr recht hoher Schmelzpunkt (oder Schmelzbereich), der zu ziemlich hohen Arbeitstemperaturen führt. Dies führt bei den Lötprozessen zu thermomechanischen Spannungen auf der elektronischen Baugruppe, die zu einer Beschädigung oder Vorschädigung einiger temperaturempfindlicher Leiterplattenmaterialien und Bauteilen führen können. Typische Löttemperaturen beim Wellenlöten sind 250-280°C, beim Selektivlöten 260-330°C und gemessene Peak-Temperaturen beim Reflowlöten 235-250°C. Die beliebteste Legierung ist die Sn96,5Ag3Cu0,5-Legierung mit einer Schmelztemperatur um 217°C, die oft als SAC305 bezeichnet wird. Andere Versionen sind SnAg4Cu0,5, SnAg3,8Cu0,7, SnAg3,9Cu0,6,... Die Unterschiede im Schmelzpunkt zwischen diesen Legierungen und die Unterschiede in Bezug auf die mechanischen, elektrischen und thermischen Eigenschaften sind für die meisten elektronischen Anwendungen und Lötprozesse nicht von Bedeutung. Aus Kostengründen wird die Legierung mit dem niedrigsten Ag-Gehalt bevorzugt und das ist SAC 305. Ebenfalls aus Kostengründen gibt es einen Trend zu SnAgCu-Legierungen mit niedrigem Ag-Gehalt, wie z.B. Sn99Ag0,3Cu0,7, Sn98,5Ag0,8Cu0,7,..., die oft als 'Low SAC'-Legierungen bezeichnet werden. Diese Legierungen haben einen Schmelzbereich zwischen 217°-227°C. Dies erfordert in den meisten Fällen höhere Arbeitstemperaturen bei den Lötprozessen von bis zu 10°C, was bei einigen temperaturempfindlichen Bauteilen von Bedeutung sein kann. Die mechanischen, elektrischen und thermischen Eigenschaften der sogennaten Low SAC-Legierungen unterscheiden sich etwas stärker von denen der Standard SAC-Legierungen. Generell haben sie eine geringere Temperaturzyklusbeständigkeit (Ermüdungsfestigkeit), aber für die meisten elektronischen Anwendungen ist dies nicht von Bedeutung. Die erforderliche um 10°C höhere Arbeitstemperatur ist jedoch beim Reflowlöten oft ein Problem, da die meisten elektronischen Geräte eine oder mehrere temperaturempfindliche Bauteile haben. Außerdem sind SMD-Lötstellen (Surface Mount Device) im Allgemeinen schwächer als durchkontaktierte Lötstellen. Auch haben SAC-Legierungen im Allgemeinen eine eher weniger gute Temperaturwechselbeständigkeit, insbesondere bei dünnen Lötstellen. In Anbetracht all dieser Faktoren fällt die Wahl in den meisten Fällen auf die Standard-SAC-Legierungen und nicht auf die Niedrig-SAC-Legierungen für das Reflowlöten. Beim Wellenlöten sieht die Sache ein wenig anders aus. Das Wellenlötbad mit einer bleifreien Lötlegierung erzeugt aufgrund seiner hohen Arbeitstemperatur ziemlich viele Oxide. Aus diesem Grund haben sich viele Hersteller für Maschinen mit geschlossenem Stickstoffatmospäre entschieden. Dies erfordert jedoch Investitionen in die Infrastruktur, die nicht jeder Hersteller bereit oder in der Lage ist, zu tun. Die entstehenden Oxide werden in der Regel an den Hersteller der Lotlegierung zurückverkauft und dort recycelt. Die Gesamtkosten für den Elektronikhersteller sind ziemlich hoch, vor allem bei den Lotlegierungen mit hohem Ag-Gehalt wie SAC305. Deshalb gibt es eine Tendenz zur Verwendung von Low SAC- und sogar SnCu-Legierungen (ohne Ag). Auch hier erfordert der höhere Schmelzpunkt eine Erhöhung der Betriebstemperatur, um einen akzeptablen Durchtieh in die Durchkontaktierungen zu erreichen. Da in den meisten Fällen die Wärme von der Unterseite und den Anschlüssen der Bauteilen zugeführt wird, leiden die temperaturempfindlichen Bauteilen auf der Oberseite der Platine im Allgemeinen nicht allzu sehr darunter. In Bezug auf die mechanische Zuverlässigkeit der Low SAC- und SnCu-Legierung ist dies weniger ein Problem, da durchkontaktierte Lötverbindungen im Allgemeinen viel stärker sind als SMD-Verbindungen. Wenn (geklebte) SMD-Komponenten auf der Unterseite der Leiterplatte wellengelötet werden, kann dies anders sein. Auch wenn thermisch schwere Anwendungen gelötet werden müssen, können die höheren Schmelzpunkte ein Problem mit einem guten Durchstieg in die Durchkontaktierungen darstellen. Es sind Fälle bekannt, in denen die Arbeitstemperatur so stark erhöht werden musste, dass das Leiterplattenmaterial und einige Bauteile auf der Oberseite beschädigt wurden. In solchen Fällen ist eine niedrigschmelzende Lotlegierung eine gute Lösung. Niedrigschmelzende Legierungen auf SnBi-Basis wurden bei der Umstellung von Pb-haltigen auf Pb-freie Legierungen wegen ihrer Unverträglichkeit mit Pb nie als brauchbare Alternative angesehen. In der Übergangsphase, als noch viele Bauteilen und Leiterplattenmaterialien Pb enthielten, war es unmöglich, sie zu verwenden. Seit ein paar Jahren beginnt die Industrie jedoch, die niedrigschmelzenden Legierungen wieder in Betracht zu ziehen, da sie viele Vorteile haben und das Risiko einer Pb-Kontamination extrem gering geworden ist. Eine niedrigschmelzende Lotlegierung wie z.B. LMPA-Q erfordert viel niedrigere Betriebstemperaturen als die standardmäßigen bleifreien Lotlegierungen. Beim Reflowlöten ist eine Spitzentemperatur von 190°C-210°C erforderlich, beim Wellenlöten beträgt die Badtemperatur typischerweise 220°C-230°C und beim Selektivlöten liegt die Arbeitstemperatur typischerweise bei 240°C-250°C. Dadurch wird das Risiko der Beschädigung temperaturempfindlicher Bauteilen und Leiterplattenmaterialien erheblich reduziert und sogar die Verwendung preiswerterer Bauteilen und Materialien, die temperaturempfindlich sind, erleichtert. Beim Reflowlöten führt die Legierung mit dem niedrigen Schmelzpunkt auch zu einer geringeren Lunkerbildung (Voidbildung) bei BTCs (Bottom Terminated Components, Bauteile mit den Anschlüssen an der Unterseite). Im Allgemeinen weisen Legierungen mit niedrigem Schmelzpunkt weniger als 10% Lunker (Voids) auf, während bleifreie SAC-Legierungen in der Regel 20-30% Lunker aufweisen. Beim Wellenlöten ermöglicht die niedrigschmelzende Legierung schnellere Produktionsgeschwindigkeiten von bis zu 70% und beim Selektivlöten, bei dem das Löten von Steckern mit bis zu 50mm/s erfolgen kann, kann die Gesamtprozesszeit um die Hälfte reduziert werden, wodurch die Maschinenkapazität um 100% erhöht wird. Außerdem hat die Legierung mit dem niedrigen Schmelzpunkt keine Probleme mit einem guten Durchtieg in die Durchkontaktierungen bei thermisch schweren Bauteilen. Die Verwendung von Stickstoff beim Wellen- und Reflowlöten ist möglich, aber nicht erforderlich. Die thermischen, elektrischen und mechanischen Eigenschaften der LMPA-Q-Legierung mit niedrigem Schmelzpunkt sind für die meisten elektronischen Anwendungen ausreichend. Angesichts all dieser Vorteile sehen viele die niedrigschmelzenden Legierungen als die Zukunft der Elektronikfertigung.

  • Bleihaltige legierungen sind die traditionellen SnPb(Ag)-Legierungen, die in der Elektronikfertigung vor 2006 für die Verbindung von elektronischen Bauteilen mit Leiterplatten verwendet wurden. Im Jahr 2006 schränkte der Gesetzgeber die Verwendung von Blei (Pb) ein, da die Gefahr bestand, dass Altgeräte auf Mülldeponien das Grundwasser verschmutzen und Pb in das Ökosystem gelangen würde. Wenn Pb vom menschlichen Körper aufgenommen wird, kann es nur sehr schwer wieder entfernt werden und es ist bekannt, dass es viele möglichen (langfristigen) Gesundheitsprobleme verursacht. Aus diesem Grund hat die Elektronikindustrie bleifreie Lötlegierungen eingeführt. Da die langfristige Zuverlässigkeit der bleifreien Legierungen zu diesem Zeitpunkt (2006) noch nicht erwiesen war, durften einige kritische Branchen der Elektronikindustrie, wie z.B. die Automobil-, Eisenbahn-, Medizin- und Militärindustrie, vorübergehend weiterhin die SnPb(Ag)-Legierungen verwenden. Aber auch in diesen Branchen wird die Verwendung von bleihaltigen Legierungen schrittweise eingestellt. Die typischsten Legierungen für das Wellenlöten waren Sn60Pb40 und Sn63Pb37 mit einem Schmelzpunkt um 183°C. Dies ermöglichte Betriebstemperaturen um 250°C. Das Oxidationsverhalten der Legierungen wurde als akzeptabel angesehen und die Verwendung einer geschlossenen Stickstoffatmosphäre wie bei bleifreien Legierungen war nicht erforderlich. Für das Reflowlöten war die meist typische Legierung Sn62Pb36Ag2 mit einem Schmelzpunkt um 179°C. Der Zusatz von Ag verleiht den SMD-Lötstellen (Surface Mount Device), die in der Regel weniger stabil sind als Durchstecklötstellen, zusätzliche mechanische Zuverlässigkeit. Die Legierung ermöglichte (gemessene) Peak-Temperaturen zwischen 200-230°C. Die Verwendung von Stickstoff beim Reflowprozess war zwar vorhanden, aber sicherlich nicht so weit verbreitet wie bei bleifreien Legierungen.

  • Im Jahr 2006 schränkte der Gesetzgeber die Verwendung von Blei (Pb) in der Elektronikfertigung ein. Es wurden jedoch viele Ausnahmen formuliert, vor allem aufgrund der fehlenden Langzeiterfahrungen mit den bleifreien Legierungen. Dies führte dazu, dass viele Elektronikfertigungsbetriebe sowohl bleifreie als auch bleihaltige Legierungen in ihren Lötprozessen verwendeten. Beim Wellen- und Selektivlöten wünschten viele Elektronikhersteller die Verwendung der gleichen Flussmittelchemie für beide Lotlegierungen. Das lag daran, dass sie mit der Chemie in Bezug auf die Zuverlässigkeit vertraut waren. Außerdem kann die Einführung neuer Materialien in der Fertigung eine Menge Papierarbeit, zusätzliche Lagerkapazitäten, usw... erfordern. Obwohl die bleifreien Legierungen höhere Betriebstemperaturen erfordern als die bleihaltigen Legierungen, kann durch eine Erhöhung der aufgetragenen Flussmittelmenge in vielen Fällen die gleiche Flussmittelchemie für beide Legierungen verwendet werden. In einigen Fällen, in der Regel beim Löten von elektronischen Geräten mit hoher thermischer Masse, ist es jedoch nicht möglich, das gleiche Flussmittel für beide Lotlegierungen einzusetzen. In diesen Fällen wird in der Regel ein Flussmittel mit einem höheren Feststoffgehalt benötigt. Viele Lötdrähte und Lotpasten sind mit demselben Flussmittel für bleifreie und bleihaltigen Legierungen erhältlich.

  • Reduziert den Lotverbrauch

  • Reduzierte Produktionskosten

Physikalische & chemische Eigenschaften

Hinweis
Antioxidationstabletten werden weder für geschlossene inerte Atmosphären noch für Ni-dotierte Lotlegierungen empfohlen.

Dokumente